
VisualOn Optimizer Content Adaptive 

Encoding vs CBR and CRF      

1

Executive Summary
The Channel Store (TCS), part of TVUp Group, is a leading provider of cloud-based playout and OTT 

distribution solutions, delivering linear and on-demand content for broadcasters across Europe and Latin 

America. 

The Channel Store conducted an independent, detailed comparative analysis of CBR and CRF encoding 

versus VisualOn’s Optimizer on a wide variety of content. Results demonstrated that Optimizer achieved 

the fastest encoding, lowest CPU demand, improved perceptual quality, and saved an average of 65% in 

bitrate over CBR.  

Given its simple incorporation into existing workflows and the huge impact it has on the encoding results, 

Content-Adaptive Encoding (CAE) is the optimal choice for optimizing encoder efficiency.

Context
As global OTT video consumption continues to accelerate, broadcasters and OTT platforms face a 

growing challenge: delivering a high-quality viewing experience while controlling bandwidth and storage 

costs. The Channel Store (TCS), a subsidiary of TVUp, partnered with VisualOn to evaluate a new 

approach to improve video encoding efficiency without compromising visual fidelity.



2

Through a comprehensive comparative analysis of traditional Constant Bitrate (CBR), Constant Rate 

Factor (CRF), and VisualOn’s AI-driven Optimizer, TCS identified significant quality and efficiency gains. 

Tests conducted across diverse content types—including sports, news, animation, and 

film—demonstrated that the VisualOn Optimizer achieved up to 40% bitrate savings while maintaining or 

even improving perceptual quality.

The collaboration highlights how innovative, AI-assisted encoding strategies can transform operational 

efficiency for OTT, helping them enhance viewer experience, reduce infrastructure load, and accelerate 

global scalability.

Market Context and Challenges
Streaming operators today face dual pressures: rising user expectations for high-definition, low-latency 

video, and escalating delivery costs due to higher resolutions and longer viewing times.

For operators like The Channel Store—serving audiences across Europe and Latin America—efficiency, 

agility, and compliance are key differentiators. Competing in a market alongside global cloud-based 

playout providers such as Amagi, The Channel Store focuses on regional content strategies, revenue-

sharing monetization, and adherence to European broadcasting standards.

Against this backdrop, encoding optimization has become a strategic imperative. Traditional encoding 

methods (e.g., CBR or CRF) often struggle to balance video quality with data efficiency across diverse 

content types and network conditions. VisualOn Optimizer was evaluated as a next-generation solution 

designed to address this trade-off through AI-based perceptual optimization.

Collaboration Overview: VisualOn and The Channel Store
In collaboration with VisualOn, TCS conducted a series of in-depth encoding tests to assess the efficiency, 

stability, and visual quality of the VisualOn Optimizer in real-world production environments.

VisualOn, a pioneer in multimedia playback and optimization technologies, developed the Optimizer to 

apply AI enhanced content-adaptive perceptual analysis across video frames. The goal was to achieve 

superior compression efficiency, dynamically adjusting encoding parameters to preserve visual quality 

while minimizing bandwidth and maintaining visual quality.

This joint evaluation enabled TCS to benchmark the VisualOn Optimizer against conventional encoding 

methods and assess its potential for operational deployment in VOD workflows.



3

Testing Methodology
The evaluation focused on VOD encoding workflows, with outputs encoded using AVC for video and AAC 

for audio. No bitrate limits were imposed during testing, allowing the assessment of each method’s full 

potential under unconstrained conditions.

TCS used the standard VisualOn Optimizer plugin for FFmpeg (based on FFmpeg, libx264) and after 

compilation could easily test Optimizer in their current transcoding workflow. See Annex A for the 

command lines used.

Figure 1. VisualOn Optimizer integrates into the streaming workflow

Encoding Methods Compared:

• Constant Bitrate (CBR)

• Constant Rate Factor (CRF)

• VisualOn Optimizer

Test Content Categories:

• Film / Drama

• Sports (high motion)

• News / Talk shows

• Animation

Each content type was analyzed for bitrate efficiency, visual quality (objective and subjective), and overall 

compression performance.



4

TCS noted that applying a fixed bitrate limit could yield further bitrate savings in high-motion sequences 

but might introduce minimal perceptual quality trade-offs—an important insight for real-world 

deployment optimization.

Comparative Analysis: CBR vs. CRF vs. VisualOn Optimizer
Constant Bitrate (CBR)

CBR encoding maintains a fixed bitrate throughout the video, ensuring predictable file sizes and 

consistent network load. However, this approach often leads to inefficiencies—allocating too many bits 

to low-motion scenes and too few to complex, high-motion segments—resulting in uneven visual quality 

and wasted bandwidth.

Constant Rate Factor (CRF)

CRF dynamically adjusts bitrate based on scene complexity, providing more efficient compression than 

CBR. Yet, while CRF improves quality consistency, it lacks fine-grained perceptual optimization. The 

encoded output may still exhibit visual degradation in challenging motion sequences or areas of high 

texture detail. 

It operates by targeting a specific quality level rather than a fixed bitrate. This value defines the desired 

visual quality, within a range from lower values (higher quality and higher bitrate) to higher values (lower 

quality and lower bitrate). As a result, bitrate savings directly depend on the selected CRF target and the 

complexity of the content being encoded.  

VisualOn Optimizer (VBR)

VisualOn’s Optimizer employs AI-driven perceptual modeling and content-adaptive analysis to determine 

optimal encoding parameters per frame. This enables finer control over compression efficiency, 

allocating bits intelligently based on scene motion, brightness, and texture complexity.

VisualOn Optimizer is enabled by compiling FFmpeg with the Optimizer and adding arguments in the 

command line. See Annex A for the command lines used in this benchmark.

1. Sports Content: High-Motion Scenarios

Table1. Average Bitrate Savings by Encoding Method Across Sports Content



5

Bitrate - Current Encoding

Bitrate - VisualOn Optimizer Encoding

Bitrate - CRF Encoding

Figure 1-1. Bitrate comparison between Current Encoding, VisualOn Optimizer Encoding, and CRF Encoding 

on the source video My Padel TV: Hexagon Cup 2024 Highlights Dia 4



6

VMAF - Current Encoding

VMAF - VisualOn Optimizer Encoding

VMAF - CRF Encoding

Figure 1-2. VMAF quality comparison between Current Encoding, VisualOn Optimizer Encoding, and CRF 

Encoding on the source video My Padel TV: Hexagon Cup 2024 Highlights Dia 4



7

Sports footage achieved significant bitrate reductions of 45% on average despite its demanding 
compression characteristics. Savings ranged from 13% (MMA) to 67% (padel) and 55% (surf).

The Optimizer maintained or improved VMAF scores, demonstrating excellent adaptability to rapid 
motion and dynamic scene transitions.

2. News and Documentaries: Efficiency in Controlled Environments

Table2. Average Bitrate Savings by Encoding Method Across News/Documentary Content



8

Bitrate - Current Encoding

Bitrate - VisualOn Optimizer Encoding

Bitrate - CRF Encoding

Figure 2-1. Bitrate comparison between Current Encoding, VisualOn Optimizer Encoding, and CRF Encoding 
on the source video El País: Curry japonés, una receta de primero de cocina



9

VMAF - Current Encoding

VMAF - VisualOn Optimizer Encoding

VMAF - CRF Encoding

Figure 2-2. VMAF quality comparison between Current Encoding, VisualOn Optimizer Encoding, and CRF 
Encoding on the source video  El País: Curry japonés, una receta de primero de cocina



10

Characterized by moderate motion and studio-based production, this category achieved 68.8% average 
bitrate savings across all resolutions. The Optimizer efficiently managed added visual elements such as 
graphics, subtitles, and logos, maintaining or enhancing overall visual quality.

3. Film and Series: Consistent Quality in Long-Form Content

Table3. Average Bitrate Savings by Encoding Method Across Film and Series Content



11

Bitrate - Current Encoding

Bitrate - VisualOn Optimizer Encoding

Bitrate - CRF Encoding

Figure 3-1. Bitrate comparison between Current Encoding, VisualOn Optimizer Encoding, and CRF Encoding 
on the source video Planeta de Cine: El Callejón.



12

VMAF - Current Encoding

VMAF - VisualOn Optimizer Encoding

VMAF - CRF Encoding

Figure 3-2. VMAF quality comparison between Current Encoding, VisualOn Optimizer Encoding, and 
CRF Encoding on the source video Planeta de Cine: El Callejón.



13

Narrative content featuring a mix of static and dynamic scenes achieved consistent bitrate savings 
without compromising visual quality. Average reduction reached 64.8%, with low-motion sequences 
contributing significantly to efficiency.

Compared to CRF, maintaining equivalent VMAF scores would require ~80% higher bitrate, whereas the 
Optimizer reduced bitrate by ~20% versus current encoding profiles at the same quality level.

4. Animation: Exceptional Gains in Stylized Content

Table4. Average Bitrate Savings by Encoding Method Across Animation Content



14

Bitrate - Current Encoding

Bitrate - VisualOn Optimizer Encoding

Bitrate - CRF Encoding

Figure 4-1. Bitrate comparison between Current Encoding, VisualOn Optimizer Encoding, and CRF Encoding 

on the source video Anime Visión: Arifureta T02 E12, Un nuevo viaje



15

VMAF - Current Encoding

VMAF - VisualOn Optimizer Encoding

VMAF - CRF Encoding

Figure 4-2. VMAF quality comparison between Current Encoding, VisualOn Optimizer Encoding, and 

CRF Encoding on the source video Anime Visión: Arifureta T02 E12, Un nuevo viaje.



16

Analysis of Peak Bitrates – Why and How to Tackle
While the overall bitrate reduction achieved by Optimizer is substantial, identifying scenarios where 

compression is less effective is equally important. To this end, peak bitrate segments across all VBR-

encoded outputs were analyzed.

This analysis aims to detect scenes with the highest instantaneous bitrate after optimization and identify 

encoder challenges or limitations that the encoding with Optimizer may face.

The highest bitrate peaks were consistently observed in scenes with special lighting conditions, such as 

light bulbs turning on in dark environments. In general, dark scenes require more bitrate to maintain 

visual quality, likely due to noise and fine gradients in shadowed areas that are harder to compress 

effectively.

Other common peak triggers include:

• Scenes with water, especially moving water with reflections or splashes as seen in the lake scene or 

the surf channel

• Grass fields or foliage, due to their fine texture and irregular patterns

• Snowy environments, which often introduce a mix of brightness and subtle detail

• Wide landscapes in general, which combine high detail, depth, and complex motion across large areas

These patterns suggest that the encoder and thus Optimizer require more bits to achieve high quality 

with high spatial complexity and variable lighting.

Should wide bitrate variation be a concern, it can be controlled by setting the appropriate maxrate and 

bufsize parameters with the encoder. This can achieve a slight additional bitrate saving high-motion 

scenes with bitrate spikes at the cost of a minor reduction in quality in those moments.

Encoding Performance Analysis
In addition to the quality and bitrate comparisons, the encoding performance of the three methods (CBR, 

CRF, and Optimizer) was also evaluated. The performance assessment was conducted locally on a laptop, 

using one representative sample for each content category. Although the absolute encoding times are 

specific to this environment, the relative percentages reported here reliably reflect the tendencies of each 

method and can be considered representative of their general behavior. 

Animated content delivered the highest bitrate savings of 85.8% on average thanks to large flat-color 

regions, sharp edges, and minimal noise. While CRF achieved 26–52% savings compared to CBR, it 

required 300–320% more bitrate than VBR, underscoring the Optimizer’s exceptional efficiency for highly 

stylized and less complex visuals.



17

The metrics analyzed included total encoding time, CPU usage, and memory consumption. Some clear 

tendencies emerged across all test cases:

• Encoding Time (rtime):

o CRF reduced encoding time by 3–25% vs. CBR (avg. 19%).

o Optimizer achieved 7–27% faster encoding (avg. 22%).

o Optimizer remained ~2–4% faster than CRF.

• CPU Usage (utime):

o CRF lowered CPU use by 15% vs. CBR, up to 31% in some cases.

o Optimizer further reduced CPU consumption by up to 50%, averaging 35% less.

o Optimizer offered 21–28% additional savings above CRF.

• Memory Usage (maxrss):

o CRF slightly reduced memory (up to 2%) vs. CBR.

o Optimizer required 16–32% more memory than CBR and 19–35% more than CRF.

In summary, CRF offers a balanced improvement over CBR in both speed and memory efficiency, 

whereas VisualOn Optimizer achieves the fastest encoding and lowest CPU demand at the expense of 

more memory consumption.

Final Conclusion: Bitrate Savings and Quality Impact
Comprehensive testing of the VisualOn Optimizer across a diverse range of video content—including 

animation, sports, film and series, and news/documentaries—revealed consistent patterns in bitrate 

reduction and quality retention.

Global Bitrate Savings
For each category, the average bitrate savings across all three video layers (1080p, 720p, 480p) were:

Category
Average Bitrate Savings 

(VisualOn Optimizer)
Average Bitrate Savings 

(CRF)

Film & Series 64.84% 39.5%

Sports 45.10% 17.9%

News & Documentaries 68.8% 25.3%

Animation 85.8% 56.3%



18

CRF vs. CBR vs. VisualOn Optimizer (VBR)

CRF clearly improves upon current CBR encoding and results vary with content type. In some cases, 
bitrate reductions are smaller while others exceed 50%, with an average of 20%. Compared to VBR with 
VisualOn Optimizer, CRF typically requires significantly more bitrate, ranging from about 80% up to over 
300% in certain cases.

The primary advantage of CRF is its ability to maintain consistent and predictable quality by adapting 
bitrate to scene complexity. VBR with VisualOn Optimizer, in contrast, optimizes for lower overall bitrate 
but allows more variability in visual quality. The estimated overall bitrate savings when applying CRF 
encoding across the full catalog is approximately 34%.

In this study, CRF encoding was performed using a fixed target value of CRF 21 across all tested content. 
This value was selected as a best-fit average, as it resulted in an overall VMAF score closest to the target 
quality level used for the VisualOn Optimizer (VMAF 96).

It should be noted that CRF evaluations involve a degree of approximation. Depending on content 
complexity, higher CRF values could in some cases still achieve the same target VMAF, leading to 
additional bitrate savings.

Therefore, while the results presented here provide a representative and fair comparison, further per-
title tuning of CRF values could potentially achieve even closer quality matching or incremental efficiency 
gains.

Optimizer Visual Quality (VMAF) Results

In addition to bandwidth savings, VMAF scores were used to assess perceived visual quality. Across all 
tested content, VMAF scores remained stable or improved by 1–3 points after optimization.

These results confirm that the Optimizer not only compresses more efficiently but also enhances visual 
quality.

These savings are calculated by comparing the original CBR-encoded content (5160/2850/1860 kbps for 
1080p/720p/480p, respectively) with the newly generated Optimizer VBR-encoded versions.

When aggregating results across all categories (weighted equally per content and layer) and without 
considering additional layers some content may include, the estimated overall bitrate savings is 
approximately 65% when applying the Optimizer at scale across the full catalog. 

This represents a significant improvement in storage and delivery efficiency, reducing costs for both CDN 
and storage infrastructure.



19

Summary
The collaboration between VisualOn and The Channel Store demonstrates the transformative potential 
of AI-driven video optimization. Across diverse content types—sports, news, film, and animation—the 
VisualOn Optimizer consistently delivered substantial bitrate savings, averaging approximately 65% 
across all resolutions, while maintaining or enhancing perceived visual quality (VMAF). 

Compared to traditional CBR and CRF encoding, Optimizer achieved faster encoding times and 
significantly lower CPU usage, albeit with higher memory demand. These results highlight how AI-
assisted, content-adaptive encoding can reduce delivery costs, improve operational efficiency, and ensure 
superior viewer experiences for OTT platforms at scale, without any need to proceed to per-title or 
manual encoding adjustments : it is all done automatically by Optimizer.



20

Annex A – Command Lines
=== CBR ENCODING ===

ffmpeg -hide_banner -benchmark -nostdin -y -xerror \
-i “promoTivify1.mp4” -max_muxing_queue_size 4096 \
-filter_complex “\
[0:v:0]scale=iw*sar:ih,yadif[v_step_0]; \
[v_step_0]null[v_step_1]; \
[v_step_1]format=yuv420p,split=5[v_step_2_0][v_step_2_1][v_step_2_2][v_step_2_3][v_step_2_4]; \
[v_step_2_0]scale=1920:1080:force_original_aspect_ratio=decrease,pad=1920:1080:-1:-
1:color=black[v_out_0]; \
[v_step_2_1]scale=1280:720:force_original_aspect_ratio=decrease,pad=1280:720:-1:-
1:color=black[v_out_1]; \
[v_step_2_2]scale=854:480:force_original_aspect_ratio=decrease,pad=854:480:-1:-1:color=black[v_out_2]; 
\
[v_step_2_3]scale=640:360:force_original_aspect_ratio=decrease,pad=640:360:-1:-1:color=black[v_out_3]; 
\
[v_step_2_4]scale=426:240:force_original_aspect_ratio=decrease,pad=426:240:-1:-1:color=black[v_out_4]; 
\
[0:a:0]loudnorm=I=-23:LRA=10:TP=-1[a_step_0]; \
[a_step_0]asplit=5[a_out_0][a_out_1][a_out_2][a_out_3][a_out_4]” \
\
-map “[v_out_0]” -map “[a_out_0]” -c:v:0 libx264 \
-x264-params “nal-hrd=cbr:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -vsync cfr -r 25 -profile:v high -bf 2 \
-b:v:0 5161200 -maxrate:v:0 5161200 -minrate:v:0 5161200 -bufsize:v:0 10322400 \
-c:a:0 aac -b:a:0 128k -ac:0 2 -ar 48000 -metadata:s:a:0 language=spa \
\
-map “[v_out_1]” -map “[a_out_1]” -c:v:1 libx264 \
-x264-params “nal-hrd=cbr:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -vsync cfr -r 25 -profile:v high -bf 2 \
-b:v:1 2851200 -maxrate:v:1 2851200 -minrate:v:1 2851200 -bufsize:v:1 5702400 \
-c:a:1 aac -b:a:1 128k -ac:1 2 -ar 48000 -metadata:s:a:1 language=spa \
\
-map “[v_out_2]” -map “[a_out_2]” -c:v:2 libx264 \
-x264-params “nal-hrd=cbr:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -vsync cfr -r 25 -profile:v high -bf 2 \
-b:v:2 1861200 -maxrate:v:2 1861200 -minrate:v:2 1861200 -bufsize:v:2 3722400 \
-c:a:2 aac -b:a:2 128k -ac:2 2 -ar 48000 -metadata:s:a:2 language=spa \
\
-map “[v_out_3]” -map “[a_out_3]” -c:v:3 libx264 \
-x264-params “nal-hrd=cbr:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -vsync cfr -r 25 -profile:v high -bf 2 \
-b:v:3 926200 -maxrate:v:3 926200 -minrate:v:3 926200 -bufsize:v:3 1852400 \
-c:a:3 aac -b:a:3 128k -ac:3 2 -ar 48000 -metadata:s:a:3 language=spa \
\



21

-map “[v_out_4]” -map “[a_out_4]” -c:v:4 libx264 \
-x264-params “nal-hrd=cbr:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -vsync cfr -r 25 -profile:v high -bf 2 \
-b:v:4 486200 -maxrate:v:4 486200 -minrate:v:4 486200 -bufsize:v:4 972400 \
-c:a:4 aac -b:a:4 128k -ac:4 2 -ar 48000 -metadata:s:a:4 language=spa \
\
-f hls -hls_time 5 -hls_playlist_type vod \
-hls_flags independent_segments+discont_start+program_date_time \
-hls_segment_type mpegts \
-hls_segment_filename “prueba comandos/cbr/data_%v_%02d.ts” \
-master_pl_name master.m3u8 \
-var_stream_map “v:0,a:0 v:1,a:1 v:2,a:2 v:3,a:3 v:4,a:4” \
“prueba comandos/cbr/stream_%v.m3u8”

=== CRF ENCODING ===

ffmpeg -hide_banner -benchmark -nostdin -y -xerror \
-i “promoTivify1.mp4” -max_muxing_queue_size 4096 \
-filter_complex “\
[0:v:0]scale=iw*sar:ih,yadif[v_step_0]; \
[v_step_0]null[v_step_1]; \
[v_step_1]format=yuv420p,split=5[v_step_2_0][v_step_2_1][v_step_2_2][v_step_2_3][v_step_2_4]; \
[v_step_2_0]scale=1920:1080:force_original_aspect_ratio=decrease,pad=1920:1080:-1:-
1:color=black[v_out_0]; \
[v_step_2_1]scale=1280:720:force_original_aspect_ratio=decrease,pad=1280:720:-1:-
1:color=black[v_out_1]; \
[v_step_2_2]scale=854:480:force_original_aspect_ratio=decrease,pad=854:480:-1:-1:color=black[v_out_2]; 
\
[v_step_2_3]scale=640:360:force_original_aspect_ratio=decrease,pad=640:360:-1:-1:color=black[v_out_3]; 
\
[v_step_2_4]scale=426:240:force_original_aspect_ratio=decrease,pad=426:240:-1:-1:color=black[v_out_4]; 
\
[0:a:0]loudnorm=I=-23:LRA=10:TP=-1[a_step_0]; \
[a_step_0]asplit=5[a_out_0][a_out_1][a_out_2][a_out_3][a_out_4]” \
\
-map “[v_out_0]” -map “[a_out_0]” -c:v:0 libx264 -crf:v:0 21 -preset slow \
-x264-params “force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:0 5161200 -bufsize:v:0 10322400 \
-c:a:0 aac -b:a:0 128k -ac:0 2 -ar 48000 -metadata:s:a:0 language=spa \
\
-map “[v_out_1]” -map “[a_out_1]” -c:v:1 libx264 -crf:v:1 21 -preset slow \
-x264-params “force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:1 2851200 -bufsize:v:1 5702400 \
-c:a:1 aac -b:a:1 128k -ac:1 2 -ar 48000 -metadata:s:a:1 language=spa \
\



22

-map “[v_out_2]” -map “[a_out_2]” -c:v:2 libx264 -crf:v:2 21 -preset slow \
-x264-params “force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:2 1861200 -bufsize:v:2 3722400 \
-c:a:2 aac -b:a:2 128k -ac:2 2 -ar 48000 -metadata:s:a:2 language=spa \
\
-map “[v_out_3]” -map “[a_out_3]” -c:v:3 libx264 -crf:v:3 21 -preset slow \
-x264-params “force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:3 926200 -bufsize:v:3 1852400 \
-c:a:3 aac -b:a:3 128k -ac:3 2 -ar 48000 -metadata:s:a:3 language=spa \
\
-map “[v_out_4]” -map “[a_out_4]” -c:v:4 libx264 -crf:v:4 21 -preset slow \
-x264-params “force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:4 486200 -bufsize:v:4 972400 \
-c:a:4 aac -b:a:4 128k -ac:4 2 -ar 48000 -metadata:s:a:4 language=spa \
\
-f hls -hls_time 5 -hls_playlist_type vod \
-hls_flags independent_segments+discont_start+program_date_time \
-hls_segment_type mpegts \
-hls_segment_filename “prueba comandos/crf/data_%v_%02d.ts” \
-master_pl_name master.m3u8 \
-var_stream_map “v:0,a:0 v:1,a:1 v:2,a:2 v:3,a:3 v:4,a:4” \
“prueba comandos/crf/stream_%v.m3u8”

=== VOOP ENCODING ===
Note the only 2 new arguments in the command line, in yellow below:

ffmpeg_VOOP -hide_banner -benchmark -nostdin -y -xerror \
-vo_optimizer -vo_vmaf 96 \
-i “promoTivify1.mp4” -max_muxing_queue_size 4096 \
-filter_complex “\
[0:v:0]scale=iw*sar:ih,yadif[v_step_0]; \
[v_step_0]null[v_step_1]; \
[v_step_1]format=yuv420p,split=5[v_step_2_0][v_step_2_1][v_step_2_2][v_step_2_3][v_step_2_4]; \
[v_step_2_0]scale=1920:1080:force_original_aspect_ratio=decrease,pad=1920:1080:-1:-
1:color=black[v_out_0]; \
[v_step_2_1]scale=1280:720:force_original_aspect_ratio=decrease,pad=1280:720:-1:-
1:color=black[v_out_1]; \
[v_step_2_2]scale=854:480:force_original_aspect_ratio=decrease,pad=854:480:-1:-1:color=black[v_out_2]; 
\
[v_step_2_3]scale=640:360:force_original_aspect_ratio=decrease,pad=640:360:-1:-1:color=black[v_out_3]; 
\
[v_step_2_4]scale=426:240:force_original_aspect_ratio=decrease,pad=426:240:-1:-1:color=black[v_out_4]; 
\



23

[0:a:0]loudnorm=I=-23:LRA=10:TP=-1[a_step_0]; \
[a_step_0]asplit=5[a_out_0][a_out_1][a_out_2][a_out_3][a_out_4]” \
\
-map “[v_out_0]” -map “[a_out_0]” -c:v:0 libx264 -preset slow \
-x264-params “nal-hrd=none:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:0 5161200 -bufsize:v:0 10322400 \
-c:a:0 aac -b:a:0 128k -ac:0 2 -ar 48000 -metadata:s:a:0 language=spa \
\
-map “[v_out_1]” -map “[a_out_1]” -c:v:1 libx264 -preset slow \
-x264-params “nal-hrd=none:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:1 2851200 -bufsize:v:1 5702400 \
-c:a:1 aac -b:a:1 128k -ac:1 2 -ar 48000 -metadata:s:a:1 language=spa \
\
-map “[v_out_2]” -map “[a_out_2]” -c:v:2 libx264 -preset slow \
-x264-params “nal-hrd=none:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:2 1861200 -bufsize:v:2 3722400 \
-c:a:2 aac -b:a:2 128k -ac:2 2 -ar 48000 -metadata:s:a:2 language=spa \
\
-map “[v_out_3]” -map “[a_out_3]” -c:v:3 libx264 -preset slow \
-x264-params “nal-hrd=none:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:3 926200 -bufsize:v:3 1852400 \
-c:a:3 aac -b:a:3 128k -ac:3 2 -ar 48000 -metadata:s:a:3 language=spa \
\
-map “[v_out_4]” -map “[a_out_4]” -c:v:4 libx264 -preset slow \
-x264-params “nal-hrd=none:force-cfr=1:scenecut=-1:min-keyint=50:keyint=50” \
-force_key_frames “expr:gte(t,n_forced*5.0)” -r 25 -profile:v high -bf 2 \
-maxrate:v:4 486200 -bufsize:v:4 972400 \
-c:a:4 aac -b:a:4 128k -ac:4 2 -ar 48000 -metadata:s:a:4 language=spa \
\
-f hls -hls_time 5 -hls_playlist_type vod \
-hls_flags independent_segments+discont_start+program_date_time \
-hls_segment_type mpegts \
-hls_segment_filename “prueba comandos/voop/data_%v_%02d.ts” \
-master_pl_name master.m3u8 \
-var_stream_map “v:0,a:0 v:1,a:1 v:2,a:2 v:3,a:3 v:4,a:4” \
“prueba comandos/voop/stream_%v.m3u8”


